Storage capacity of two-dimensional neural networks.
نویسنده
چکیده
We investigate the maximum number of embedded patterns in the two-dimensional Hopfield model. The grand state energies of two specific network states, namely, the energies of the pure-ferromagnetic state and the state of specific one stored pattern are calculated exactly in terms of the correlation function of the ferromagnetic Ising model. We also investigate the energy landscape around them and the stability of the pure retrieval state. Taking into account the qualitative features of the phase diagrams obtained by Nishimori, Whyte, and Sherrington [Phys. Rev. E 51, 3628 (1995)], we conclude that the network cannot retrieve more than three patterns.
منابع مشابه
Predicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks
A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radi...
متن کاملNeural Prediction of Buckling Capacity of Stiffened Cylindrical Shells
Estimation of the nonlinear buckling capacity of thin walled shells is one of the most important aspects of structural mechanics. In this study the axial buckling load of 132 stiffened shells were numerically calculated. The applicability of artificial neural networks (ANN) in predicting the buckling capacity of vertically stiffened shells was studied. To this end feed forward (FF) multi-layer ...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملDIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES
The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...
متن کاملApplication of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images
Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...
متن کاملModeling Through Artificial Neural Networks of the Phenolic Compounds and Antioxidant Activity of Blueberries
The present study aimed at investigating the influence of several production factors, conservation conditions, and extraction procedures on the phenolic compounds and antioxidant activity of blueberries from different cultivars. The experimental data was used to train artificial neural networks, using a feed-forward model, which gave information about the variables affecting the antioxidant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 65 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2002